Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Wearable Technol ; 5: e1, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510985

RESUMO

Telerehabilitation and robotics, either traditional rigid or soft, have been extensively studied and used to improve hand functionality after a stroke. However, a limited number of devices combined these two technologies to such a level of maturity that was possible to use them at the patients' home, unsupervised. Here we present a novel investigation that demonstrates the feasibility of a system that integrates a soft inflatable robotic glove, a cloud-connected software interface, and a telerehabilitation therapy. Ten chronic moderate-to-severe stroke survivors independently used the system at their home for 4 weeks, following a software-led therapy and being in touch with occupational therapists. Data from the therapy, including automatic assessments by the robot, were available to the occupational therapists in real-time, thanks to the cloud-connected capability of the system. The participants used the system intensively (about five times more movements per session than the standard care) for a total of more than 8 hr of therapy on average. We were able to observe improvements in standard clinical metrics (FMA +3.9 ± 4.0, p < .05, COPM-P + 2.5 ± 1.3, p < .05, COPM-S + 2.6 ± 1.9, p < .05, MAL-AOU +6.6 ± 6.5, p < .05) and range of motion (+88%) at the end of the intervention. Despite being small, these improvements sustained at follow-up, 2 weeks after the end of the therapy. These promising results pave the way toward further investigation for the deployment of combined soft robotic/telerehabilitive systems at-home for autonomous usage for stroke rehabilitation.

2.
IEEE Int Conf Rehabil Robot ; 2023: 1-6, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37941227

RESUMO

Recent developments in soft wearable robots have shown promise for assistive and rehabilitative use-cases. For inflatable approaches, a major challenge in developing portable systems is finding a balance between portability, performance, and usability. In this paper, we present a textile-based robotic sleeve that can provide functional elbow flexion assistance and is compatible with a portable actuation unit (PAU). Flexion is driven by a curved textile actuator with internal pneumatic supports (IPS). We show that the addition of IPS improves torque generation and increases battery-powered actuations by 60%. We demonstrate that the device can provide enough torque throughout the ROM of the elbow joint for daily life assistance. Specifically, the device generates 13.5 Nm of torque at 90°. Experimental testing in five healthy individuals and two individuals with Amyotrophic Lateral Sclerosis (ALS) demonstrates its impact on wearer muscle activity and kinematics. The results with healthy subjects show that the device was able to reduce the bicep muscle activity by an average of 49.1±13.3% during static and dynamic exercises, 43.6±11.1% during simulated ADLs, and provided an assisted ROM of 134°±13°. Both ALS participants reported a reduced rate of perceived exertion during both static and dynamic tasks while wearing the device and had an average ROM of 115°±8°. Future work will explore other applications of the IPS and extend the approach to assisting multiple joints.


Assuntos
Esclerose Lateral Amiotrófica , Articulação do Cotovelo , Robótica , Dispositivos Eletrônicos Vestíveis , Humanos , Cotovelo/fisiologia , Torque
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...